
Static Differential Program Analysis for
Software-Defined Networks

Tim Nelson, Andrew D. Ferguson, and Shriram Krishnamurthi

Brown University

Abstract. Networks are increasingly controlled by software, and bad
updates can bring down an entire network. Network operators therefore
need tools to determine the impact of changes. To address this, we
present static differential analysis of software-defined network (SDN)
controller programs. Given two versions of a controller program our tool,
Chimp, builds atop Alloy to produce a set of concrete scenarios where the
programs differ in their behavior. Chimp thus enables network developers
to exploit the power of formal methods tools without having to be trained
in formal logic or property elicitation. Furthermore, we show that there
are many interesting properties that one can state about the changes
themselves. Our evaluation shows that Chimp is fast, returning scenarios
in under a second on several real applications.

1 Introduction

Traditional networks run individually-configured, autonomous switches that are
often closed, proprietary hardware. In a software-defined network (SDN) [7],
switches defer control of their behavior—and by extension, of the network—to
a logically centralized server (the “controller”), which may be anything from
a single commodity machine to a distributed cluster. The controller executes
programs that—by updating state, interacting with other programs, and sending
instructions to switches—collectively implement the network’s behavior, rang-
ing from standard network operations to novel behaviors unseen in traditional
networks. SDN has been adopted by companies such as VMware (for its virtual-
network products [20]) and Google (for its backbone network [15]). Programs
may be written in arbitrary languages; beyond traditional languages, this is
leading to a resurgence of declarative languages—like Flog [16], NLog [20] from
Nicira/VMware, and Flowlog [27]—which are the focus of this work.

In this paper, we target the evolution of controller software. Programs evolve
for many reasons: due to a bug fix, feature update, refactoring, etc. Developers
need robust techniques to manage evolution because mistakes can cause an entire
network to malfunction. Techniques like testing and verification are, however, only
as effective as the coverage provided by their inputs; they may require a knowledge
of logic that operators may not have; and most of all, they only check what was
stated. However, when we add a new feature, we do not write extensive properties
or tests about parts of the system that are unrelated. Therefore, developers need
techniques that have the ability to (perhaps unpleasantly) surprise.

We therefore present differential analysis for SDN controller programs, which
presents the semantic or behavioral difference between two versions of a program.
The core analysis only needs two versions; it does not require tests or logical
properties. The output of our tool, Chimp (short for “Change impact”), is in
terms of scenarios : concrete situations where the two programs differ. The overall
goal of differential analysis is to help developers transfer trust between versions; if
they had faith in the proper execution of an old version, the semantic differences
help them focus on the only things they need to examine to extend that faith to
the new version. (We contrast other forms of differential analysis in Sec. 8.)

Chimp also enables users to query differences and even verify properties
of those differences. This enables many more use-cases. For instance, when a
program is merely being refactored or otherwise cleaned up, there should be no
behavioral change; a Chimp user can check such differential properties, and any
counter-examples would need attention. Chimp can even contrast multiple ways
of extending a program, i.e., compute the difference of differences.

This paper makes the following contributions:

1. it identifies the problem of static differential program analysis for SDNs
(Sec. 2 and 3);

2. it discusses and overcomes potential challenges and pitfalls in this analysis
(Sec. 2 and 5);

3. it demonstrates that this analysis can be done effectively (Sec. 6 and 7); and
4. it shows how traditional properties and differential analysis meet at differential

properties (Sec. 2 and 4).

In short, Chimp represents a fruitful application of various formal methods to a
novel and important domain.

2 Differential Analysis at Work

The work in this paper targets the class of declarative languages used to program
SDNs. We focus on Flowlog [27], which is richer in expressiveness than most of
the others, so that our work is most widely applicable. Beyond the details of
tooling, we believe the core ideas of Chimp apply equally well to other languages
(which we discuss in Sec. 8).

In an SDN, many traditional network operations are implemented entirely
in software. We illustrate this with a well known networking example: Network-
Address Translation (NAT), which is used widely (e.g., to multiplex multiple home
machines over a shared router). Figure 1 shows two different implementations of
NAT in Flowlog—an initial version without the underlined code, and a second
version with it. For simplicity, this example involves a home router with only two
ports (1=inside, 2=outside). The external interface uses the hardware, or mac,
address 00:00:00:00:00:FF and is assigned the ip address 192.168.100.100. The
core ideas in this example are the same for larger devices.

Lines 1 and 2 define the controller’s state schema. A database table, nat,
stores the current NAT mappings; its first columns identify packets by source,

1 TABLE nat(macaddr,ipaddr,tpport,tpport);
2 VAR nextport: tpport = 10000;
3

4 ON tcp_packet(p) WHERE p.locPt = 1 AND
5 nat(p.dlSrc,p.nwSrc,p.tpSrc,natport):
6 DO forward(new) WHERE
7 new.tpSrc = natport AND
8 new.nwSrc = 192.168.100.100 AND
9 new.locPt = 2 AND

10 new.dlSrc = 00:00:00:00:00:FF;
11

12 ON tcp_packet(p) WHERE p.locPt = 1 AND
13 NOT nat(p.dlSrc,p.nwSrc,p.tpSrc,ANY):
14 INSERT (p.dlSrc,p.nwSrc,p.tpSrc,nextport) INTO nat;
15 DO forward(new) WHERE
16 new.nwSrc = 192.168.100.100 AND
17 new.locPt = 2 AND
18 new.tpSrc = nextport AND
19 new.dlSrc = 00:00:00:00:00:FF;
20 INCREMENT nextport;

Packets arrive at a port (locPt) on a switch (locSw). Their headers contain a source

(dlSrc) and destination (dlDst) hardware (or mac) address. Transport Control Protocol

(tcp) packets also have a source (nwSrc) and destination (nwDst) network address and

a source (tpSrc) and destination (tpDst) service port.

Fig. 1. Network-address translation (NAT) in Flowlog. An initial version did not include
the underlined portions, and so failed to translate mac addresses as well as ip addresses.

and its final column gives an ephemeral tcp port to use in the translation. The
original version identifies packets by ip address and initial tcp port; the modified
version also uses mac address. A variable (nextport) holds the next available
tcp port for NAT to use, starting at 10000. Lines 4–10 handle outgoing packets
for which a translation already exists, and lines 12–20 process outgoing packets
that start new ones. We elide the code to handle return traffic, which only adds
an additional 5 or 6 lines.

Each Flowlog program rule can be thought of as a database view over the
program’s current state and the incoming event. As in SQL or Datalog, Flowlog
rule bodies constrain that view, dictating which actions the program can take.
Lines 4–5 say that the forwarding action on lines 6–10 applies only for tcp
packets arriving at port 1 (the internal port), where there is a matching row in
the current nat table. It also binds the value in the final column of that row to the
variable natport, which is used later. Lines 6–10 say to forward matching packets,
but to first modify their ip source to 192.168.100.100 (the assigned ip address)
and their tcp source to the value in natport (obtained from the nat table). In
the modified version, the rule also sets the mac source to 00:00:00:00:00:FF.
Lines 12–21 work similarly, but since there is no corresponding row in the nat

table, they use the next available free port. They then insert the appropriate new
row into the table and increment the nextport variable.

While the original only modifies a packet’s ip and tcp fields, the second
version (with underlines) also changes mac sources to reflect that the modified

Pre-State: nat = {}, nextport = 10000

Incoming event: Packet with mac src = Mac 0, ip src = Ip 0, tcp src = TCP 0

Program 1 Post-State:
nat = {(Ip 0,TCP 0, 10000)}
nextport = 10001

Program 2 Post-State:
nat = {(Mac 0, Ip 0,TCP 0, 10000)}
nextport = 10001

Program 2 outputs packet with:
MAC src = 00:00:00:00:00:FF,
IP src = 192.168.100.100,
TCP src = 10000
Program 1 does not output this packet.

Fig. 2. Scenarios returned by Chimp for the NAT change. In this case, both share
the same pre-state and arrival event. The scenario on the left shows a state-transition
difference caused by the new program storing the mac source address. The scenario on
the right shows that in the revised program, the packet’s mac address is modified. Mac
0 denotes an arbitrary mac address (and similarly for other fields).

packet comes from the outgoing interface—standard behavior for a NAT. In
order to modify addresses consistently, the new program adds a column to the
nat table that holds the source mac address of each NAT flow. We will now use
Chimp to analyze the semantic consequences of this edit.

If we view a Flowlog program as a function that processes events, a change
may have two types of semantic impact: given the same input, either the programs
produce different output (e.g., forward packets differently) or they transition to
different states. Chimp defines a built-in analysis for each of these: (1) chPol-
Out (“change policy output”) which generates scenarios that show any differing
output behavior, and (2) chStTrans (“change state transitions”), which shows
the differences in how the two programs evolve their state. Users may select from
these (and other built-in analyses, which we discuss later) or construct their own
using these as a starting point.

Chimp’s output provides concrete scenarios that show how programs can
express the behavior described. When seeking semantic differences via chPolOut

or chStTrans, each scenario contains a prestate that shows the state of the two
programs before they diverge, and a trigger event for the divergence. Scenarios
for other analyses may contain different information as requested by the user.

Figure 2 shows output scenarios for both chPolOut and chStTrans on the
NAT program edit. Both show a packet arriving at the internal interface; the
scenario on the left shows a state-transition difference and the scenario on the
right shows a behavioral difference. The nat tables in these scenarios are empty
because their value is immaterial for this specific behavior, and Chimp is designed
to only produce minimal scenarios, which greatly improves the quality and brevity
of output (Sec. 7).

Schema Combination Every Flowlog program has a schema: a set of TABLE
declarations, each of which includes a list of data-types that define that table’s
columns. A schema clash occurs whenever two programs declare different arities,
types, or column orderings for the same table. The happens between the NAT
programs (Figure 1, line 1), as the modified program adds a column to the nat

table. This clash must be resolved in order for Chimp to have a consistent notion
of “pre-state” for its analysis. To do so, Chimp creates a new version of the
conflicted table for each clashing program. For the NAT example, it creates
a separate three-column nat1 table and four-column nat2 table. Chimp then
rewrites the original program to refer only to nat1 and the modified version to
nat2. This presents a new challenge: output scenarios will now contain both tables,
and Chimp’s search for scenarios will treat the two new tables independently.
Since it searches all possibilities, Chimp will consider cases where (e.g.) the nat1

table is empty but the nat2 table is not. Scenarios where the two programs’ states
bear no relationship to one another may seem spurious—since the two tables
were originally one, their contents should be somehow related.

Lockstep Constraints The programmer might assert that, since the new nat

table is just an extension of the first, the two tables should be identical in the final
three columns. Formally, they would like to restrict Chimp’s search to scenarios
where it holds that: “Every row in nat2 (minus its first column) is also in nat1;
every row in nat1 is also in nat2 (with some mac address in the first column)”
or, in logical form:

∀i, p1, p2 (∃m nat2(m, i, p1, p2)) ⇐⇒ nat1(i, p1, p2)

We call this a lockstep constraint because it expresses how two programs evolve
their states together. It represents an intuition about the intent of the table
change. Constraints like this may be added to an analysis, analogously to adding
new conditions to a SQL statement. This process lends itself to iteration, with
refinements growing ever more focused as the user zeroes in on surprising behavior.

Differential Properties Before we assert the lockstep constraint—and prevent
Chimp from returning scenarios that violate it—we would like to validate the
intuition it represents. To that end, we can phrase the lockstep constraint as a
differential property, i.e., a property that spans the behavior of multiple programs,
and check it in Chimp. When checking a lockstep constraint in this way, we refer
to it as a lockstep property. We proceed inductively. To verify the base case, we
check that the property always holds in the (empty) initial program state. The
bi-implication in the above property makes this trivially true. It then suffices to
check whether the programs can ever violate the property as their states evolve.
To do so, we phrase the property as a custom analysis predicate (Sec. 4) and ask
Chimp for counterexamples.

Perhaps surprisingly, Chimp produces a counterexample (Figure 3). This
scenario shows a pre-state that respects the property (one row in each table),
but a post-state that does not: a second entry, using a fresh external port, has
been added to nat2 but not to nat1. This means that either the revised program
is wrong, or the property itself is incorrect (reflecting faulty intuition).

The revised program correctly creates a new entry for packets with a new mac
source, even if its ip source is already in the table. This is to be expected: since
the mac sources are distinct, the packets involve separate physical machines and
must be handled separately. Thus, seeing this scenario corrects the programmer’s

Pre-State:

nat1 = Ipaddr 0 Tpport 0 Tpport 2

nat2 = Macaddr 0 Ipaddr 0 Tpport 0 Tpport 2

Incoming event: tcp packet from:
MAC = Macaddr 1, IP = Ipaddr 0, TCP Port = Tpport 0
Program 1 Post-State: no change

Program 2 Post-State:

nat2 =
Macaddr 0 Ipaddr 0 Tpport 0 Tpport 2
Macaddr 1 Ipaddr 0 Tpport 0 Tpport 0

Fig. 3. Failure of the first NAT lockstep property. Abstract values Macaddr 0, Tpport
0, ... denote disjoint arbitrary addresses, ports, etc.

intuition and informs them that the new program has actually fixed a potential
bug that they had not considered. Some reflection also leads to a more accurate
constraint relating the two tables: “Every row in nat1 is also in nat2 (with some
mac address in the first column); for every row in nat2 there is a row in nat1

with the same source address and port,”, or:

∀i, p1, p2,m (nat1(i, p1, p2) =⇒ ∃m′ nat2(m′, i, p1, p2))

∧(nat2(m, i, p1, p2) =⇒ ∃p′ nat1(i, p1, p
′))

Chimp finds no counterexample to this new constraint, increasing confidence
that it is correct. We now assert it in Chimp, forcing the two tables to be tightly
coupled in each output scenario. As seen here, “obvious” intuitions about schema
changes can be subtly wrong. Instead of assuming a standard lockstep constraint,
or adding one automatically, Chimp lets users test their intuitions via analysis and
then assert them explicitly. Errors revealed lead to missing correctness properties
which can then be added to existing test- and property-suites.

3 Theory

Every Flowlog rule (an ON condition followed by a single action) is equivalent to
a formula of first-order logic that defines the rule’s meaning and enables formal
reasoning. Figure 4 describes this translation in detail for rules, formulas, and
terms; the translation for all rules produces the first-order theory of a Flowlog
program. Flowlog’s syntax is inspired by non-recursive Datalog with negation,
and its logical semantics follows. Variables not explicitly quantified are interpreted
universally, as in Datalog. The only exception is that the wildcard term ANY binds
tighter than other terms; the formula NOT R(ANY) means ¬∃ aR(a) (i.e, that the
relation is empty). The translation inserts quantifiers to support this. Flowlog
desugars rules with OR into multiple rules in the obvious way. The INCREMENT

keyword is syntactic sugar for relational expressions plus INSERT and DELETE rules.
For each state relation symbolR, helper relations plusR andminusR (Figure 4)

describe how that relation changes for each event received. If R is the relation

JON in(i): DO out(o) WHERE F K = out(o)← in(i) ∧ JFK
JON in(i): INSERT (o1, ..., ok) INTO R WHERE F K = plusR(o1, ...ok)← in(i) ∧ JFK)
JON in(i): DELETE (o1, ..., ok) FROM R WHERE F K = minusR(o1, ...ok)← in(i) ∧ JFK)

JNOT fK = ¬JfK
Jf1 AND f2K = Jf1K ∧ Jf2K

Jt1 = t2K = Jt1K = Jt2K
JR(t1, ..., tk)K = ∃any1, ..., anym R(Jt1K, ..., JtkK)

each anyi has fresh index for every occurrence of ANY.

JcK = c (for a constant c)
JxK = x (for a variable v)

Jx.fldK = fld(x) (for a variable x and packet field name fld)
JANYK = anyf (where f is a fresh index)

Fig. 4. Translation of Flowlog (rules, formulas, and terms) to FOL.

before an event arrives, then the new value of the relation will be:
(R \minusR) ∪ plusR

(That is, INSERT overrides DELETE.)

Flowlog disallows rule bodies that reference intensional relations (those defined
by the program, e.g., forward, rather than stored in the program’s state, e.g.,
nat). Also, rules must be safe: all variables (and output packet fields, in the case
of a DO rule) in a rule’s head and variables in negated body literals must appear
in a non-negated literal in that rule’s body.

Property-Checking The theory of a Flowlog program, Γ , is given by taking
the union of the result of Figure 4 for each rule. It contains an implication for
each rule, where each rule body dictates a class of input events and program
states and each head gives a corresponding program behavior. For analysis, we
take the theory’s Clark completion [1, p. 407], Γc, which essentially adds reverse
implications that define the ways each action could be caused.

Since Γc defines both the consequences of arriving events and the possible
triggers for a given behavior, a first-order property φ holds if and only if Γc ∪{¬φ}
is unsatisfiable. For example, the program in Figure 1 always translates tcp
packets’ ip source to 192.168.100.100 only if the following formula is unsatisfiable
in conjunction with the completion of the program’s theory:

∃p, p′ . forward(p′) ∧ tcp packet(p) ∧ nwsrc(p′) 6= 192.168.100.100

Models that satisfy the conjunction are counterexamples to the property.

Differential Properties φ may also involve more than one program; it can
express differential properties over multiple programs’ collective behavior. The
2-program chPolOut analysis of Sec. 2, for example, corresponds to:

∃p, p′ . tcp packet(p)∧(forward1(p′) ∧ ¬forward2(p′)∨
forward2(p′) ∧ ¬forward1(p′))

where each forwardi represents the forward relation of the ith program. Chimp
automatically performs this renaming for all output and state-modification
relations, and we will use the notation freely when it is clear from context.

4 Flowlog to Alloy

Flowlog’s runtime automatically updates the network’s switches as needed; the
language abstracts out the specifics of those updates and associated optimizations.
Because of this tierless abstraction, Flowlog’s first-order logic semantics can be
used directly to reason about program behavior. Since Alloy supports predicate
logic, producing an Alloy specification for a Flowlog program essentially involves
following Figure 4. Chimp also defines several built-in analysis predicates.

Single-Program Predicates For every action that a program can take, Chimp
creates an Alloy predicate representing when that action occurs. For instance, the
packet-forwarding action for each program produces a predicate with signature1:

pred forward[st: State, e: EVpacket, out: EVpacket]

A State atom represents a database over the program’s schema. Events (types
starting with EV) are generalizations of packets that also include external events
or notifications from other modules. Predicates are true or false on any given
input. The forward predicate holds on inputs consisting of a State st, an input
Event e, and an output Event out if and only if the original program would
forward e with the modifications expressed in out. Figure 5 lists other predicates
that Chimp creates for each program. The higher-level predicate outpolicy

holds any time the program will respond to event ev by emitting ev2 when in
state st, and transition expresses when a state-transition is taken on an event.

Cross-Program Predicates Chimp also constructs basic cross-program dif-
ferential analysis predicates (Figure 5) for each pair of programs given. To detect
a difference in two programs’ output (chPolOut), Chimp looks for an output
(outev) that is produced by one program but not another:

pred chPolOut_1_2[st: State, ev: Event] {
some out: Event |
prog1/outpolicy[st,ev,out] && not prog2/outpolicy[st,ev,out] ||
prog2/outpolicy[st,ev,out] && not prog1/outpolicy[st,ev,out] }

The names prog1 and prog2 denote the two programs; each has its own
outpolicy. Since outpolicy is used, rather than any specific output action,
this predicate is more general than the example formula in Sec. 3. chStTrans is
defined similarly, checking for a mismatch in plus_R or minus_R behavior.

Custom Predicates Users may create their own analyses in the Alloy language,
usually by building atop Chimp’s built-in predicates. For instance, the first
differential property from Sec. 2 can be expressed as:

1 We have removed some machine-generated typing information and other Alloy-
language foibles for brevity. Each Flowlog program produces a separate Alloy module.

Predicate Arguments True if the program in state s:

plus R s : State, e : Event, t0, ..., tk adds t0, ..., tk to R when receiving e

minus R s : State, e : Event, t0, ..., tk removes t0, ..., tk from R when receiving e

<action> s : State, e1 : Event, e2 : Event outputs e2 (of type <action>) on e1
outpolicy s : State, e1, e2 : Event outputs e2 on receiving e1

transition s : State, e : Event, s2 : State transitions to s2 on event e

Predicate Arguments True if the programs:

chPolOut s : State, e : Event have different output on event e in state s
chStTrans s : State, e : Event diverge in state on event e in state s

rchChPolOut s, s2 : State, e : Event chPolOut with reachability check for s
rchChStTrans s, s2 : State, e : Event chStTrans with reachability check for s

Fig. 5. Built-in predicates for each program and differential-analysis. <action> and R
denote arbitrary output actions and table names.

pred lockstep_nat_condition[st1, st2: State] {
all x1, x2, x3 : univ |

(some x4 : univ | x4 -> x1 -> x2 -> x3 in st2.nat_2) iff
(x1 -> x2 -> x3 in st1.nat_1) }

assert lockstep_nat_assert {
all st, st1’, st2’: State, ev: Event |

(lockstep_nat_condition[st, st] and
prog1/transition[st,ev,st1’] and prog2/transition[st,ev,st2’])
implies
lockstep_nat_condition[st1’, st2’] }

using the transition predicate from Figure 5. The lockstep nat condition

predicate identifies pairs of “safe” states that satisfy the condition. The assertion
seeks a scenario where the programs transition from a “safe” to an ”unsafe” state.
A single pre-state suffices since the two programs’ nat tables are held separately.

5 Soundness and Completeness

As is standard for such tools (including Alloy), Chimp performs bounded scenario
finding. Along with an analysis predicate, users provide bounds for each datatype,
e.g. up to 6 switches, 4 ip addresses, and so on. The search is guaranteed to
be sound (with a caveat below); it never returns a false positive. Given its
boundedness, one might reasonably inquire whether it can issue false negatives.

Every rule body is in the ∃∗∀∗ fragment of first-order logic, which is well-
known [5, 33] to admit bounded satisfiability-checking. Positive instantiations of
those bodies, as in the definition of chPolOut, are also in that fragment. However,
negative instantiations (also used in chPolOut and others) are not.

A cyclic Flowlog program is one in which some ANY term appears together with
a rule-body variable in a negated body atom. For instance, a program containing
the body atom NOT R(x, ANY), where x does not appear in the rule head, is

cyclic. If a program is acyclic, elementary rewrites can break all ∀∃ nesting in
negated rule bodies. Thus, chPolOut and chStTrans over acyclic programs admit
automatically-generated sufficient bounds. Acyclic Flowlog is expressive; every
program in Sec. 7 is acyclic.

For cyclic programs, since both Flowlog and Alloy have a notion of types (in
contrast to standard untyped first-order logic), it is possible [30] to strengthen the
∃∗∀∗ condition to safely bound analysis involving limited ∀∃ quantification. Chimp
makes use of this information to produce bounds, and chPolOut and chStTrans

are therefore complete even on many cyclic programs. Custom queries can of
course introduce additional quantification that renders Chimp incomplete—e.g.,
as in the lockstep property of Sec. 2.

Thus, while Chimp is incomplete in general, many useful analyses have a
bound under which Chimp is guaranteed to find any counterexamples; Chimp
computes this bound automatically. Unlike prior work [30] on completeness in
Alloy, which naively counts all well-typed ground terms, Chimp takes advantage of
implicit disjunction in the analysis formulas. For instance, when seeking localized
differences, there is no need to consider quantification in both forward and plus_R

rules simultaneously. This produces tighter bounds that are sufficient to detect
any single semantic difference, benefiting both performance and scenario brevity.

Where sufficient bounds cannot be established automatically, users provide
bounds manually. As in Alloy, domain knowledge often eases this process. As
Jackson [14] notes, even the most insidious bugs often occur on small example
runs. Incomplete differential analyses can thus be viewed as a form of automated
bug-finding that increases confidence in the program.

Soundness of Addition The original Flowlog-to-Alloy translator [27] did
not support Flowlog’s add primitive. While Alloy has a notion of integers, they
are bounded by a user-provided bitwidth—a fact that made using Alloy integers
impractical. Instead, Chimp represents addition via a ternary relation. By default,
this under-approximates true addition, sacrificing a measure of soundness for
tractability. In practice, we insert additional axioms for arithmetic as needed.

Pre-State Reachability By default, Chimp does not guarantee that prestates
of scenarios it returns are reachable in real program runs. This does not render
Chimp “unsound”: such scenarios still witness a program state and input on
which the two programs differ, and even an unreachable semantic difference can
yield new insight into the programs. Nevertheless, it can be valuable to ignore
unreachable scenarios and see a concrete execution trace that shows how the
scenario can be reached. For these reasons, Chimp can enhance its search with
full system traces. The reachability-aware analyses rchChPolOut (“reachable
chPolOut”) and rchChStTrans (“reachable chStTrans”) behave much like their
counterparts, but the scenarios they produce are augmented with separate system
traces for each program. Separate traces are necessary since, if the programs’
states eventually diverge, a single trace would be unable to capture behavioral
differences that happen after divergence. Users may expect the state difference
but not any subsequent deltas; a single trace could therefore conceal surprising
differences. To use reachability-aware analyses, users must provide a maximum

trace length to check up to. As (e.g.) a pre-state that requires 3 steps to reach will
not be detected if the user-provided bound is 2 steps, reachability-awareness can
cause a loss of completeness. It also negatively impacts performance, since longer
traces mean a larger space of possible scenarios to search. It is up to the user to
decide whether to make this tradeoff—losing completeness and performance in
exchange for scenario provenance and reachability guarantees.

6 Scenario Minimization

Scenarios require user effort to understand, and needless detail increases the time
taken to comprehend them as well as reducing the generality of each individual
scenario. Because of this this, Chimp provably presents only minimal scenarios.
Formally, let Γ be the first-order theory of a Flowlog program plus additional
first-order constraints, such as the negation of properties (Sec. 3). Define the
set of scenarios that satisfies Γ as scns(Γ) = {S |S |= Γ} and the relation ⊆ on
scenarios to denote containment of relational facts, that is: S1 ⊆ S2 if and only if
all facts R(a1, ..., an) true in S1 are also true in S2. Now the set of ⊆-minimal
scenarios for Γ is mins(Γ) = {S ∈ scns(Γ) | ∀S′ ∈ scns(Γ) .S′ ⊆ S =⇒ S = S′}.

In other words, minimal scenarios contain only the facts they need to satisfy
the theory. For instance, removing any row in Figure 3 would either make the
scenario inconsistent (i.e., not reflective of valid system behavior) or no longer
satisfy the analysis predicate. Minimality also forces the use of abstract variables
whenever possible. Chimp will not give a packet field or table cell a concrete value
unless the scenario is contingent on that value. Otherwise, it will use an abstract
value (e.g., Macaddr 0 in Figure 3); this is key in reducing the number of scenarios
given and improving the usefulness of each. To implement minimization, Chimp
leverages Aluminum [28], a modified version of Alloy that iteratively removes
unnecessary facts before presenting scenarios. As we will see, minimization can
result in a drastic decrease in scenario size.

7 Evaluation

Our experiments include differential analyses across several programs: the NAT
application from Sec. 2 (NAT); a learning-switch implementation (MAC); an
address-resolution protocol (ARP) cache; a round-robin load-balancer (LB);
a network-information base (NIB) that computes reachability and spanning-
tree information; and a stolen-laptop detector (SL) that sends alerts if suspect
addresses are seen on the network. Due to the conciseness of declarative, rule-
based programming in this domain, these programs are each modest in size.
Nevertheless, together they comprise a significant library of standard network
functionality as well as some new behavior made possible by SDNs.

For NAT, we compare the two versions from Sec. 2 with the correct lockstep
condition added, along with checking both lockstep properties. For MAC, we
compare versions with and without support for host mobility. For ARP, we
compare three consecutive diffs: two bugfixes (1→2 and 2→3), and a refactoring

(3→4). For LB we check a bug-fix involving initialization of the controller state.
The bug manifests as improper forwarding behavior after initialization, and
so we enable reachability-aware analysis here. For NIB, we check a fix to how
network-reachability is calculated. Originally, SL sends notifications for every
suspicious packet; we compare this to a buggy new version intended to rate-limit
notifications (1→2) and that version to the correct new version (2→3), as well
as examine the difference-of-differences between these changes: (1→2) vs. (1→3).

Performance and Scenario Counts Figure 6 reports the number of scenarios
Chimp returns (under the corresponding bound in columns 3–7, which we discuss
later), as well as Chimp’s performance on each analysis. The first two columns
name the program(s) and the analysis performed. The eighth column gives the
number of scenarios found. It is Chimp’s goal to present surprising scenarios
to the user, but it cannot know ahead of time which scenarios will be most
valuable. A small number of scenarios that nevertheless illustrate all potential
semantic changes is therefore good in principle. Minimization plays a major role
here, as even the stolen-laptop changes (with no more than 4 minimal scenarios)
produce hundreds of non-minimal scenarios, many of which are (unnecessarily)
as large as the bounds permit. Our experience indicates that the first scenario
presented is generally interesting, especially for user-defined queries, and larger
scenario-counts are to be expected when the programs differ broadly.

The final columns of Figure 6 report on runtime. Chimp first translates the
problem to Boolean logic before solving to find a scenario. We report the time
for both steps as the average and standard deviations of 10 runs; Chimp was
started afresh each time to mitigate cache-warming effects. The solving time
is the time to either produce the first scenario or complete the search without
finding one. We measure performance on an Intel i5-2400 3.10 Ghz with 8GB
RAM (i.e., a generic laptop). The search is largely CPU-bound, using no more
than 1.5 GB of memory even on the larger analyses. Chimp returns scenarios
fairly quickly—under a second, for most analyses—even when there are no results,
and it must complete a search of the entire scenario-space.

Computed Bounds and Scenario Sizes Columns 3–7 of Figure 6 report
on bounds and the size of scenarios that Chimp presents. We show bounds for
each datatype separately. The B subcolumn reflects whether Chimp was able to
compute a guaranteed-sufficient bound (Sec. 5); a 7 indicates a bound could not
be computed, in which case parenthetical values indicate bounds we manually
provided to Chimp. Sometimes, even when a sufficient bound is available, a
technical limitation in the Alloy engine—a cap on the number of potential
facts value that we were unable to modify with reasonable effort—prevents us
from using that bound, in which case we use a smaller number (indicated in
parentheses). This is only a restriction imposed by our current toolchain, and
not a fundamental limitation. As expected, Chimp is able to find a bound for
each chPolOut and chStTrans, rendering its search complete on these rows.

P
ro

g
ra

m
s

A
n
a
ly
si
s

M
A
C

IP
T
C
P

E
v
e
n
ts

S
ta

te
s

S
c
e
n
a
ri
o

T
ra

n
s
(m

s)
S
o
lv
e
(m

s)
B

S
B

S
B

S
B

S
B

S
C
o
u
n
t

A
v
g

σ
A
v
g

σ

N
A

T
c
h
P
o
l
O
u
t

&
L

ck
st

p
2

7
(4

)
2

7
(4

)
1

7
(4

)
2

2
2

1
1

>
1
0
0
0

4
3
8

1
1
8

1
1
2

4
L

ck
st

p
1

7
(3

)
2

7
(3

)
2

7
(3

)
3

7
(1

)
1

7
(3

)
2

5
4

4
2

2
1
0
4

7
L

ck
st

p
2

7
(3

)
–

7
(3

)
–

7
(3

)
–

7
(1

)
–

7
(3

)
–

0
5
5

4
1
4
1

4

M
A

C
c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
6

1
1

1
c
h
S
t
T
r
a
n
s

4
1

0
0

0
0

1
1

3
2

4
1
9

1
4

1
1

8

A
R

P
(1
→

2
)
c
h
P
o
l
O
u
t

1
3
(3

)
3

6
(3

)
1

0
0

2
2

1
1

1
5
4

3
3

2
8

2
0

1
8

A
R

P
(2
→

3
)
c
h
P
o
l
O
u
t

1
3
(3

)
3

6
(3

)
1

0
0

2
2

1
1

1
0
2

3
5

2
8

2
3

1
9

A
R

P
(3
→

4
)
c
h
P
o
l
O
u
t

1
2
(3

)
3

6
(3

)
1

0
0

2
2

1
1

3
2
4

2
8

2
4

1
0

1
1

L
B

c
h
S
t
T
r
a
n
s

4
0

0
0

0
0

1
1

3
2

1
4
5

3
1

4
6

3
7

c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
2
5

2
1

1
r
c
h
C
h
S
t
T
r
a
n
s

7
(4

)
2

0
0

0
0

7
(3

)
3

7
(3

)
3

3
1
6
7

8
6
0
1
1

5
1

r
c
h
C
h
P
o
l
O
u
t

7
(4

)
1

0
0

0
0

7
(4

)
4

7
(5

)
4

8
3
3
0

1
5
1

8
9
5
2
4

5
5
5

N
IB

c
h
S
t
T
r
a
n
s

4
0

0
0

0
0

2
2

1
1

4
0

2
4
2

1
1
4

2
6
0
5

1
6
8

c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
3

1
1

1

S
to

le
n

L
a
p
to

p
c
h
P
o
l
O
u
t

4
0

0
0

0
0

2
2

1
1

2
1
4

2
1
1

2
(1
→

2
)

c
h
S
t
T
r
a
n
s

3
1

0
0

0
0

1
1

3
2

3
2
1

1
7

1
0

8

S
to

le
n

L
a
p
to

p
c
h
P
o
l
O
u
t

4
2

0
0

0
0

2
2

1
1

4
2
1

7
1
4

8
(2
→

3
)

c
h
S
t
T
r
a
n
s

2
–

0
–

0
–

1
–

3
–

0
2
0

1
3

5
4

S
to

le
n

L
a
p
to

p
∆

(p
1
,p

3
)
−
∆

(p
1
,p

2
)

4
1

0
0

0
0

2
2

1
1

4
2
6

2
1

1
6

1
3

F
ig
.
6
.

B
o
u
n
d
s

co
m

p
u
te

d
,

sc
en

a
ri

o
si

ze
s,

n
u
m

b
er

o
f

m
in

im
a
l

sc
en

a
ri

o
s

fo
u
n
d
,

a
n
d

p
er

fo
rm

a
n
ce

(a
v
er

a
g
e

a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

in
m

s)
fo

r
ea

ch
a
n

a
ly

si
s.

F
o
r

ea
ch

d
a
ta

ty
p

e,
th

e
B

co
lu

m
n

d
en

o
te

s
th

e
b

o
u

n
d

s
u

se
d

.
A

n
u

m
b

er
m

b
y

it
se

lf
in

d
ic

a
te

s
th

e
co

m
p

u
te

d
su

ffi
ci

en
t

b
o
u
n
d

o
n

th
a
t

d
a
ta

ty
p

e,
w

h
ic

h
w

a
s

th
en

u
se

d
in

a
n
a
ly

si
s.
m

(n
)

sa
y
s

th
a
t

th
e

co
m

p
u
te

d
b

o
u
n
d

w
a
s
m

,
b
u
t

th
a
t

w
e

lo
w

er
ed

it
to

a
m

o
re

re
a
so

n
a
b

le
n

.
7
(n

)
d

en
o
te

s
th

a
t

a
su

ffi
ci

en
t

b
o
u

n
d

co
u

ld
n

o
t

b
e

ca
lc

u
la

te
d

,
in

w
h

ic
h

ca
se

w
e

p
ro

v
id

ed
a

re
a
so

n
a
b

le
b

o
u

n
d
n

.
L

ow
er

n
u

m
b

er
s

in
d

ic
a
te

a
sm

a
ll

er
se

a
rc

h
sp

a
ce

.
A

b
o
u

n
d

o
f

0
m

ea
n

s
th

a
t

a
to

m
s

o
f

th
a
t

ty
p

e
w

er
e

p
ro

va
b

ly
u

n
n

ec
es

sa
ry

in
th

e
a
n

a
ly

si
s.

T
h

e
S

co
lu

m
n

g
iv

es
,

fo
r

ea
ch

d
a
ta

ty
p

e,
th

e
m

ed
ia

n
n
u

m
b

er
o
f

a
to

m
s

o
f

th
a
t

ty
p

e
u

se
d

a
cr

o
ss

a
ll

sc
en

a
ri

o
s

th
a
t

C
h

im
p

fo
u

n
d

.
A

“
–
”

in
d

ic
a
te

s
th

a
t

th
e

a
n
a
ly

si
s

fo
u
n
d

n
o

sc
en

a
ri

o
s.

F
o
r

re
a
ch

a
b
il
it

y
-a

w
a
re

a
n
a
ly

se
s,

th
e

m
a
x
im

u
m

tr
a
ce

-l
en

g
th

is
eq

u
a
l

to
th

e
b

o
u
n
d

o
n

ev
en

ts
.

A bound exists for the delta-of-delta analysis as well. In contrast, Chimp is
unable to find sufficient bounds for checking the lockstep properties, as they use
quantification in a more sophisticated way. As for reachability-aware tests, the
rchChPolOut and rchChStTrans predicates admit a sufficient bound on scenario-
size per step, thus requiring user input only to bound the number of events and
states. Since the LB programs differ only in their initialization (i.e., state change,
detected by chStTrans) chPolOut detects no functional differences. rchChPol-
Out, however, entails a search for the consequences of that change beyond its
immediate effect on program state; this adds significant complexity to the search.

Scenarios, especially after minimization (Sec. 6), may not need as many
elements as the bound indicates. Therefore, the S column presents the median
number of elements across all scenarios that Chimp returned. Where available, the
B values are quite small. However, even relative to those, the S values are smaller;
minimal scenarios contain no irrelevant output. We see that minimizing scenarios
before presenting them often reduces scenario-size by more than 50 percent. Since
simpler scenarios are quicker and easier to understand, this significantly assists
the user in focusing on the critical components of the change.

8 Related Work

Controller programs operate at multiple tiers of execution, analogous to the multi-
tier nature of web programs. In particular, controller programs generate persistent
instructions for switches, making this a form of metaprogramming, which can be
especially hard on a static analysis. Analysis is eased in tierless languages like
Flowlog [27], which abstract out the details of how the controller interacts with
the switches. To exploit tierlessness, Chimp is specifically targeted to Flowlog, but
its core ideas are not limited to one language. VMware’s Nlog [20] is, like Flowlog,
based in non-recursive logic-programming and has relational state, making it a
prime candidate for Chimp. CSDN [4], in spite of its imperative syntax, also
has relational state and a trigger-action model similar to Flowlog’s. Since CSDN
is not tierless, analysis would need to model switch-rule updates explicitly, yet
it is amenable to relational modeling. Flog [16] is another limited-power logic-
programming SDN language with relational state. Flog allows recursion, and
Chimp’s underlying engine assumes a non-recursive logic; Chimp is nevertheless
applicable to Flog’s non-recursive fragment. Chimp’s methods also apply to
stateless, declarative policy languages like NetCore [26].

NetKAT [3] is an SDN programming language that supports efficient [10]
program differencing. NetKAT programs can express path-based constraints, but
do not support program state. Differencing is therefore a fundamentally different
problem between the two languages. NetKAT also supports host-reachability
analysis that depends on the network topology; Chimp is topology-independent,
and checks whether program states (not network hosts) are reachable.

Differential program analysis is well studied outside the networking space.
Early work by Horwitz [13] finds which portions of two programs correspond and

where they can differ. Chimp’s custom predicates enable more detailed analyses,
as well as providing behavioral scenarios rather than annotated code.

More recent work includes SymDiff [21], which leverages satisfiability mod-
ulo theories (SMT) technology for program comparison; Differential Assertion
Checking (DAC) [22], which checks properties relative to program changes; and
Differential Symbolic Execution (DSE) [31], which combines symbolic execution
and SMT-solving to summarize differences between Java methods. Chimp’s sce-
narios are analogous to the output of these tools, except that they use relational
program state. Also in contrast to these tools, Chimp addresses schema clashes
and differences in potential program input types, as well as reasoning about
lockstep behavior. Since Chimp targets limited-power, declarative languages for
network-programming, it is able to make completeness guarantees that cannot
generally be made for full-featured languages, and does so without necessitating
symbolic execution.

Hawblitzel, et al. [12] give a framework for comparing pairs of imperative
programs via theorem provers. Like their mutual summaries, Chimp’s analysis
predicates describe relations over differential behavior, although mutual sum-
maries do not assume a shared prestate by default as Chimp’s basic analyses
do. Unlike mutual summaries, Chimp’s predicates can involve any number of
Flowlog programs, as in the 3-way delta-of-deltas comparison of Sec. 7. Finally,
Hawblitzel et al. do not discuss performance or brevity of output.

Chimp is partly inspired by Margrave [29], which performs differential analysis
on policies such as firewalls and routing tables. Margrave accepts a limited subset
of Cisco’s IOS configuration language and supports additional input via an
intermediate policy language; it is not designed for the SDN domain. Its policies
are strictly weaker than Flowlog’s: they can read relational state but not modify
it, and they lack the ability to express even the limited universal quantification of
Flowlog’s ANY keyword. Margrave uses Kodkod [37], the same engine underlying
Alloy and Chimp, and could thus perform some, but not all of the analyses
that Chimp can—for instance, Margrave has no support for reasoning about
state-reachability. Margrave bounds its analyses by naively summing all terms in
a policy [30]; Chimp’s focus on single-rule variations produces tighter bounds.
Also in the firewall space, Liu [23] addresses change-impact analysis for firewall
policies, not full SDN programs.

Dougherty et al. [9] split a program’s behavior into a system automaton and
a dynamic policy that filters which transitions can be taken, then give algorithms
for computing the difference of multiple policies with respect to the fixed system.
These algorithms assume a common schema between policies, whereas Chimp
allows for schema changes. Even more, since each Flowlog program defines its
own transition system, Chimp’s analysis must effectively work with multiple
system automata. Finally, their work is not implemented.

Differencing techniques in the network space tend to focus on stateless forward-
ing policies rather than stateful programs. For instance, header-space analysis [18]
could be used to compare static views of the network. In contrast, we are interested
in analyzing controller programs, with state that changes over time.

DNA (Differential Network Analysis) [24] answers differential queries about
reachability across multiple snapshots of network state (e.g., routing tables and
ACLs). Chimp does not reason about network reachability, as its analysis is
topology independent. Since Chimp analyzes programs, rather than snapshots of
forwarding policy, it must be aware of state transitions between these snapshots,
and its analysis is necessarily more complex. Like Chimp, the DNA tool minimizes
its output using Boolean techniques, but Chimp’s minimization also works over
relational program states as well as packet headers.

Chimp is complementary to statistical tools like WISE [36], which estimates
the impact of changes on response times in content-delivery-networks. Chimp’s
reasoning functions even in the absence of pre-existing logs, which machine-
learning tools such as WISE require to train their classifiers.

In contrast to differential analysis, traditional property-verification for SDN
programs is well studied. However, existing tools such as NICE [6], VeriCon [4],
Verificare [34], and Flowlog’s existing verification [27] lack differential reasoning
capabilities. The same is true of recent proof-based verification efforts [8, 35]
for SDN languages. Many other analyses [2, 11, 18, 19, 25, 32, 38] work over fixed
network policies, often accepting raw forwarding tables as input. While powerful,
applying these techniques to stateful SDN controller programs means resorting
to dynamic methods in the running system, as in the case of NetPlumber [17]
and VeriFlow [19]. Chimp analyzes stateful programs statically.

9 Conclusion

Chimp was designed with several core goals in mind: to handle dynamic program
state, to produce concrete scenarios and support schema changes (Sec. 2), to rule
out false negatives but allow reachability-checking if desired (Sec. 5), to provide
minimal, general scenario output (Sec. 6), and to support both common and
user-defined queries (Sec. 4). As our evaluation shows, Chimp’s performance is
good enough to be used as a regular part of the development cycle. The tool
currently analyzes controller programs, independent of the network’s topology.
It would also be useful to reason about network-condition changes, such as
host mobility [39], and their potential impact on behavior. Improving Chimp’s
handling of arithmetic by incorporating SMT-solver technology would also be an
interesting avenue of future work.

Acknowledgements We are grateful to the anonymous reviewers for their
helpful remarks. We thank Daniel J. Dougherty, Kathi Fisler, Rodrigo Fonseca,
and Nate Foster for useful discussions, and the Frenetic and Alloy teams for
creating excellent tools we could build upon. This work is partly supported by
the NSF.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Al-Shaer, E., Al-Haj, S.: FlowChecker: Configuration analysis and verification of
federated OpenFlow infrastructures. In: Workshop on Assurable and Usable Security
Configuration (2010)

3. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Principles of Program-
ming Languages (POPL) (2014)

4. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: VeriCon: Towards verifying controller programs in software-
defined networks. In: Programming Language Design and Implementation (PLDI)
(2014)

5. Bernays, P., Schönfinkel, M.: Zum entscheidungsproblem der mathematischen Logik.
Mathematische Annalen 99, 342–372 (1928)

6. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to test
OpenFlow applications. In: Networked Systems Design and Implementation (2012)

7. Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S.: Ethane:
Taking Control of the Enterprise. In: Conference on Communications Architectures,
Protocols and Applications (SIGCOMM) (2007)

8. Chen, C., Jia, L., Zhou, W., Loo, B.T.: Proof-based verification of software defined
networks. In: Open Networking Summit (2014)

9. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: International Joint Conference on Automated
Reasoning. Lecture Notes in Computer Science, vol. 4130, pp. 632–646 (2006)

10. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: Principles of Programming Languages (POPL) (2015)

11. Gutz, S., Story, A., Schlesinger, C., Foster, N.: Splendid isolation: A slice abstraction
for software-defined networks. In: Workshop on Hot Topics in Software Defined
Networking (2012)

12. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Towards modularly com-
paring programs using automated theorem provers. In: International Conference on
Automated Deduction (2013)

13. Horwitz, S.: Identifying the semantic and textual differences between two versions of
a program. In: Programming Language Design and Implementation (PLDI) (1990)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
second edn. (2012)

15. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
Experience with a globally-deployed software defined WAN. In: Conference on
Communications Architectures, Protocols and Applications (SIGCOMM) (2013)

16. Katta, N.P., Rexford, J., Walker, D.: Logic programming for software-defined
networks. In: Workshop on Cross-Model Design and Validation (XLDI) (2012)

17. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: Networked Systems
Design and Implementation (2013)

18. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: Networked Systems Design and Implementation (2012)

19. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: Verifying
network-wide invariants in real time. In: Networked Systems Design and Implemen-
tation (2013)

20. Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B.,
Ganichev, I., Gross, J., Gude, N., Ingram, P., Jackson, E., Lambeth, A., Lenglet,
R., Li, S.H., Padmanabhan, A., Pettit, J., Pfaff, B., Ramanathan, R., Shenker, S.,
Shieh, A., Stribling, J., Thakkar, P., Wendlandt, D., Yip, A., Zhang, R.: Network
Virtualization in Multi-tenant Datacenters. In: Networked Systems Design and
Implementation (2014)

21. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: International Conference
on Computer Aided Verification (2012)

22. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Foundations of Software Engineering (2013)

23. Liu, A.X.: Change-impact analysis of firewall policies. In: European Symposium on
Research in Computer Security (2007)

24. Lopes, N., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: DNA pairing:
Using differential network analysis to find reachability bugs. Tech. Rep. MSR-TR-
2014-58, Microsoft Research (April 2014)

25. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: Debug-
ging the data plane with Anteater. In: Conference on Communications Architectures,
Protocols and Applications (SIGCOMM) (2011)

26. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programming languages. In: Principles of Programming Languages
(POPL) (2012)

27. Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless program-
ming and reasoning for software-defined networks. In: Networked Systems Design
and Implementation (2014)

28. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

29. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Margrave
tool for firewall analysis. In: USENIX Large Installation System Administration
Conference (2010)

30. Nelson, T., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Toward a more complete
Alloy. In: International Conference on Abstract State Machines, Alloy, B, and Z
(2012)

31. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic
execution. In: Foundations of Software Engineering (2008)

32. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security
enforcement kernel for OpenFlow networks. In: Workshop on Hot Topics in Software
Defined Networking (2012)

33. Ramsey, F.P.: On a problem in formal logic. Proceedings of the London Mathemat-
ical Society 30, 264–286 (1930)

34. Skowyra, R., Lapets, A., Bestavros, A., Kfoury, A.: A verification platform for
SDN-enabled applications. In: International Conference on Cloud Engineering
(2014)

35. Stewart, G.: Computational verification of network programs in Coq. In: Certified
Programs and Proofs (2013)

36. Tariq, M.M.B., Bhandankar, K., Valancius, V., Zeitoun, A., Feamster, N., Ammar,
M.H.: Answering “what-if” deployment and configuration questions with WISE:
Techniques and deployment experience. IEEE/ACM Transactions on Networking
(Feb 2013)

37. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 632–647 (2007)

38. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg, A., Hjalmtysson, G.,
Rexford, J.: On static reachability analysis of IP networks. In: IEEE Conference on
Computer Communications (2005)

39. Zave, P., Rexford, J.: The design space of network mobility. In: Bonaventure, O.,
Haddadi, H. (eds.) Recent Advances in Networking. ACM SIGCOMM (2013)

